The arithmetic Hodge index theorem for adelic line bundles
نویسنده
چکیده
In this paper, we prove index theorems for integrable metrized line bundles on projective varieties over complete fields and number fields respectively. As applications, we prove a non-archimedean analogue of the Calabi theorem and a rigidity theorem about the preperiodic points of algebraic dynamical systems.
منابع مشابه
The Canonical Arithmetic Height of Subvarieties of an Abelian Variety over a Finitely Generated Field
This paper is the sequel of [2]. In [4], S. Zhang defined the canonical height of subvarieties of an abelian variety over a number field in terms of adelic metrics. In this paper, we generalize it to an abelian variety defined over a finitely generated field over Q. Our way is slightly different from his method. Instead of using adelic metrics directly, we introduce an adelic sequence and an ad...
متن کاملHeight and Arithmetic Intersection for a Family of Semi-stable Curves
In this paper, we consider an arithmetic Hodge index theorem for a family of semi-stable curves, generalizing Faltings-Hriljac’s arithmetic Hodge index theorem for an arithmetic surface.
متن کاملStability of Arakelov Bundles and Tensor Products without Global Sections
This paper deals with Arakelov vector bundles over an arithmetic curve, i.e. over the set of places of a number field. The main result is that for each semistable bundle E, there is a bundle F such that E⊗F has at least a certain slope, but no global sections. It is motivated by an analogous theorem of Faltings for vector bundles over algebraic curves and contains the Minkowski-Hlawka theorem o...
متن کاملOn volumes of arithmetic line bundles
We show an arithmetic generalization of the recent work of Lazarsfeld–Mustaţǎ which uses Okounkov bodies to study linear series of line bundles. As applications, we derive a log-concavity inequality on volumes of arithmetic line bundles and an arithmetic Fujita approximation theorem for big line bundles.
متن کاملHodge Index Theorem for Arithmetic Divisors with Degenerate Green Functions
As we indicated in our paper [9], the standard arithmetic Chow groups introduced by Gillet-Soulé [3] are rather restricted to consider arithmetic analogues of geometric problems. In this note, we would like to propose a suitable extension of the arithmetic Chow group of codimension one, in which the Hodge index theorem still holds as in papers [1], [7] and [14]. Let X → Spec(Z) be a regular ari...
متن کامل